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Abstract
We assessed the spatiotemporal co-occurrence patterns of a fish assemblage in the watershed of a stream in the western 
Amazon basin, and verified the influence of abiotic factors (physicochemical variables and the hydrological phase) on these 
patterns. We also examined whether species that were more similar in their tolerance of physicochemical variables tended 
to co-occur more frequently. The structure of the assemblage was evaluated using the standardized effect size (SES) of the 
C-score index and null models, with the SES being used as an indicator of the organization of the assemblage. We employed 
linear regression models to investigate the influence of precipitation levels and physicochemical variables on the SES. We 
calculated the outlying mean index and ran a Mantel test on the checkerboard unit matrix of the C-score and tolerance values 
to assess the influence of species tolerance on co-occurrence patterns. Finally, we examined the correlations between species 
pairs and both physicochemical variables and adjacent land use. We observed patterns of aggregation or randomness in vary-
ing degrees at different scales. Increased precipitation influenced the establishment of random patterns, while species pairs 
correlated primarily with the degree of preservation of the local habitat at each study site. During the dry season, species 
that were more similar to each other in their environmental tolerance tended to co-occur more systematically. If the current 
levels of change in land use in the study area continue, the fish assemblage investigated here may suffer a significant loss of 
diversity, as well as destabilization of its structure, with a high possibility of local extinction of the most sensitive species.
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Introduction

The structure of an ecological community may be influ-
enced by either deterministic, stochastic processes, or a 
combination of the two (Zhou et al. 2020). Deterministic 
ecological processes include non-random, niche-oriented 
mechanisms, while stochastic processes result in species 
composition, abundance, and diversity patterns that are 
indistinguishable from those established by chance (Chase 
and Myers 2011). Environmental filtering (e.g., due to cli-
matic variables, pH, nutrients, and oxygen concentrations) 
and biotic interactions are examples of deterministic pro-
cesses, which include niche-based ecological mechanisms 
that underpin the configuration of a community (Leibold 
and Mikkelson 2002; Peres-Neto 2004). By contrast, 
stochastic processes that involve neutral mechanisms, in 
which a pool of ecologically identical species may co-
occur (or not) as a result of the process, as well as provok-
ing the random extinction of some species or the coloniza-
tion of the environment by others (Leibold and Mikkelson 
2002). Given this, the ecological investigation of species 
co-occurrence patterns at different spatiotemporal scales 
can contribute important insights for the understanding 
of how the various deterministic and stochastic processes 
influence the species composition, distribution, and struc-
ture of ecological communities. In a set of communities 
influenced by deterministic processes, microhabitats with 
ideal conditions and resources for the establishment and 
growth of the populations of a given species will tend to 
drive patterns of aggregation and segregation between spe-
cies pairs (D’Amen et al. 2018). When aggregated, indi-
viduals or species will co-occur at specific spatiotemporal 
scales (Surendran et al. 2020), but when segregated, these 
species will tend not to co-occur spatiotemporally (Suren-
dran et al. 2020). Stochastic processes introduce random 
patterns in the co-occurrence of species in a community, 
with individuals or species occurring at random (Ortega 
et al. 2015), which results in unpredictable variations in 
species composition among communities, given that they 
are not subject to systematic community structuring mech-
anisms (Rosindell et al. 2012).

In freshwater ecosystems, predation patterns, environ-
mental filtering (Giam and Olden 2016), the hydrological 
regime (Fernandes et al. 2009; Ortega et al. 2015), and 
dispersal patterns (Gatto and Trexler 2020) are the main 
ecological factors determining the spatiotemporal patterns 
of community organization. For example, trophic param-
eters may have a direct influence on species composition 
by eliminating or reducing the abundance of one or more 
prey species (Sharpe et al. 2017), while they may also 
lead, indirectly, to shifts in habitat preferences and forag-
ing patterns (Oliveira et al. 2005). Environmental filtering 

is a deterministic process in which abiotic and/or biotic 
environmental “filters” exclude either individuals or spe-
cies that have inadequate phenotypic or functional char-
acteristics from a given patch of habitat (Mittelbach and 
Schemske 2015; Giam and Olden 2016). In this scenario, 
species that are highly specialized in ecological terms 
will be found only in areas that contain a narrow range of 
environmental conditions, while generalists will tolerate a 
diversity of environmental conditions and tend to be more 
widely distributed (Ducatez et al. 2014). Given this, fish 
species with similar environmental requirements will tend 
to co-occur in communities that have similar biological 
conditions and resources (Mittelbach and Schemske 2015; 
Giam and Olden 2016). The environmental tolerance of 
any given species in an assemblage will thus reflect the 
position and amplitude of its niche, and will be linked 
intrinsically to the co-existence of specialists and general-
ists in the wild, where the species adopt varying adaptive 
strategies in response to shifts in environmental condi-
tions at different scales (Dolédec et al. 2000; Ducatez et al. 
2014; Granot et al. 2017; Carscadden et al. 2020). There-
fore, it is necessary to understand how the niche breadths 
of the species interact with environmental heterogeneity to 
determine patterns of species co-occurrence, and to verify 
how the degree of habitat specialization causes interspe-
cific variations due to the varying sensitivity of the differ-
ent species to environmental changes (Ducatez et al. 2014; 
Bar-Massada 2015).

One factor that can cause significant changes throughout 
the entire aquatic community is the hydrological cycle (ebb 
and flood), which can determine the species composition 
of a fish assemblage (Fernandes et al. 2009; Ortega et al. 
2015). During the ebb and low water periods, some stretches 
of water become isolated, with direct effects on local bio-
logical interactions, which influence the organization of the 
assemblage, generating patterns of segregation (Fernandes 
et al. 2009). During rainy periods, when the water level rises, 
there is a larger area for species to disperse across, which 
may result in more random patterns of co-occurrence (Fer-
nandes et al. 2009; Ortega et al. 2015). Most physicochemi-
cal characteristics vary substantially across the hydrological 
cycle in aquatic ecosystems such as Amazonian streams, 
with electrical conductivity and dissolved oxygen concen-
trations (DOs) typically increasing during the rainy period, 
while the pH decreases (Winemiller et al. 2008; Figueiredo 
et al. 2010).

In addition to the intrinsic characteristics of these types 
of streams, the surrounding landscape exerts an important 
influence on the organization and species composition of 
their fish assemblages. The preservation of the riparian for-
est is fundamental to stream function, given that the forest 
canopy will reduce autotrophic production in the stream 
by shading it from the sun, while also contributing large 
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amounts of allochthonous organic material through fall-
ing debris, such as twigs, leaves, and fruit (Vannote and 
Sweeney 1980). The shading effect of the riparian forest also 
favors a reduction in the temperature of the water, and con-
tributes to an increase in DOs, creating conditions that are 
favorable to certain fish species (Teresa and Casatti 2010). 
Given the combined influence of all these factors, the varia-
tion in the composition of freshwater fish assemblages pro-
vides important insights for the identification of the impacts 
of shifting land use, given that these assemblages have been 
found to be characterized by high levels of species diversity 
(Lévêque et al. 2008; Albert et al. 2020), as well as marked 
morphological and functional variability (Winemiller 1991; 
Toussaint et al. 2016), and distinct trophic groups (Valverde 
et al. 2020).

In the present study, we evaluated the spatiotemporal pat-
terns of co-occurrence of the fish assemblages of an Ama-
zonian sub-basin, with the aim of evaluating the main fac-
tors that underpin these patterns. We used the data to test 

the following hypotheses: (1) the spatiotemporal structure 
of the fish assemblage is non-random, with co-occurrence 
patterns being influenced by hydrological conditions, phys-
icochemical variables, and land use and cover, reflecting 
the ecosystem factors that determine the configuration of 
the assemblage; and (2) the co-occurrence of species that 
are less similar to each other in terms of their tolerance of 
environmental conditions is reduced during the dry season, 
given that the environmental conditions of this period are 
more stressful for stream-dwelling fish.

Materials and methods

Study area

The micro-watershed of the Quinoá Stream (MWQS), 
a right-bank tributary of the Acre River, is located 
approximately 25 km from the city of Rio Branco, in the 

Fig. 1  Map showing the location of the Brazilian Amazon (a), the 
state of Acre (b) and the sampling points in the micro-watershed of 
the Quinoá Stream (MWQS), numbered from the headwaters to the 

mouth in ascending order (c). Data on the forest and farmland cover 
for 2018 were obtained from collection 7 of the MapBiomas Project 
(Souza et al. 2020)
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municipality of Senador Guiomard, in the Brazilian state of 
Acre (10°06′03.33″ S, 67°40′11.50″ W; Fig. 1). The land-
scape of the MWQS features first-, second-, and third-order 
streams surrounded primarily by cattle ranches and forest 
fragments with varying degrees of conservation. The local 
anthropogenic environments include dams and reservoirs, 
and the degradation of riparian forest for the establishment 
of pasture, with an accumulation of solid waste and the dis-
charge of untreated domestic effluents into local bodies of 
water (Corrêa et al. 2018). The local climate is divided into 
a rainy season, between November and April, and a drier 
period between May and October, when the mean precipita-
tion is much lower (Acre 2012).

Collection of fish specimens and measurement 
of environmental variables

We collected fish specimens every 2 months at five sampling 
points (Fig. 1) over a 2-year period, between August 2016 
and July 2018. We collected the specimens under Sistema 
de Autorização e Informação em Biodiversidade—SIS-
Bio/Instituto Chico Mendes de Conservação da Biodiver-
sidade—ICMBio, permit number 11.778, with the aim of 
sampling the different species present in the first-, second-, 
and third-order streams of the MWQS, which were classified 
based on the system of Vannote and Sweeney (1980).

We collected the fish specimens using three different 
methods (Corrêa et al. 2015): a seine net (5 m long, 2.25 m 
high, 5-mm mesh), which we deployed three times at each 
sampling site during each bimonthly visit; two dip nets 
(50 cm long, 30 cm wide, 5-mm mesh), which we deployed 

for 30 min at each site; and two sieves (80 cm long, 50 cm 
wide, 5-mm mesh), which we also deployed for 30 min 
during each visit.

After each sampling session, we euthanized all the 
captured individuals with eugenol, and then placed them 
in individually labeled plastic bags with 5% formalin for 
transportation to the laboratory, where we identified them 
using the appropriate species keys. We consulted taxo-
nomic experts, whenever necessary, to determine incon-
clusive taxa. We then placed the specimens in 70% alco-
hol, and deposited voucher specimens in the fish collection 
of the Universidade Federal do Acre in Rio Branco.

Concurrently with the collection of fish specimens, we 
obtained data on the electrical conductivity, DO), potential 
of hydrogen (pH), and temperature of the water (Table 1) 
of each stream using a Sanxin SX751A multiparameter 
apparatus. We obtained data on precipitation from the 
meteorological database of the Instituto Nacional de Mete-
orologia (2023).

We also obtained data on land use and cover, as clas-
sified by the MapBiomas project (Souza et  al. 2020). 
This project has compiled annual Landsat satellite 
images of Brazil from 1985 through 2021 (collection 7), 
and has classified the land use and cover of each pixel 
(30-m × 30-m resolution) using a random forest algorithm 
(Souza et al. 2020). We created a 100-m buffer around the 
site coordinates of each MWQS sampling point. Based 
on the available categories, we used a forest classification 
map to quantify the forest cover at each of the five MWQS 
sampling points between 2016 and 2018 (see Supplemen-
tary 1).

Table 1  Mean values (± SD) of 
the physicochemical variables 
recorded in the micro-watershed 
of the Quinoá Stream (MWQS) 
between 2016 and 2018

Period (month and year) Electrical 
conductivity 
(µS  cm-1)

Dissolved 
oxygen 
(mg/L)

pH Temperature (°C) Precipitation 
(mm/month)

Flood
December 2016 6.62 ± 5.2 4.35 ± 1.9 6.27 ± 0.6 30.55 ± 2.6 219.30
February 2017 0.09 ± 0 4.88 ± 0.3 6.1 ± 0.9 28.43 ± 0.8 236.50
April 2017 8.42 ± 2.6 5.44 ± 1.3 5.84 ± 0.2 26.39 ± 1.6 205.30
December 2017 12.2 ± 4.2 3.51 ± 2.4 6.7 ± 0.3 28.62 ± 1.1 354.20
February 2018 12.53 ± 2.6 8 ± 1 6.01 ± 0.3 26.41 ± 0.5 467.70
April 2018 8.3 ± 1.5 5.82 ± 1 6.06 ± 1.1 28.87 ± 1.1 359.20
Dry
August 2016 10.17 ± 2 5.26 ± 1.2 5.88 ± 1.9 29.01 ± 1.6 30.60
October 2016 12.77 ± 2 6.59 ± 1 5.77 ± 2.9 28.96 ± 1.6 211.30
June 2017 9.23 ± 2.8 7 ± 1.9 5.89 ± 0.2 28.79 ± 0.9 25.40
August 2017 6.83 ± 1.8 5.81 ± 1.3 6.05 ± 0.4 27.16 ± 1.4 63.40
October 2017 10.78 ± 2.4 5.77 ± 2.3 6.82 ± 0.6 30.72 ± 1.8 110.90
June 2018 13.93 ± 3.8 8.33 ± 1.2 6.2 ± 0.5 28.09 ± 1.5 26.70
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Data analysis

Co‑occurrence patterns of the fish assemblage

To analyze patterns of species co-occurrence, we organ-
ized the data in a presence-absence matrix, with the spe-
cies in rows and the samples in columns. We assessed the 
spatiotemporal organization of the fish assemblage using the 
C-score co-occurrence index (Stone and Roberts 1990). The 
C-score represents the mean co-occurrence of each pair of 
species in the community (Gotelli and McCabe 2002) and 
is given by:

where Cij = the checkerboard unit for species pair ij; ri = total 
number of occurrences of species i in the matrix (sum of 
presences in row i); rj = total number of occurrences of spe-
cies j in the matrix (sum of presences in row j); Sij = the 
number of co-occurrences of species i and j (both present 
in the same column); and M = the total number of species 
in the matrix.

We subsequently ran null models to determine whether 
the observed pattern was significantly different from patterns 
generated at random (Gotelli and McCabe 2002). This is 
a statistical approach that tests whether the spatiotemporal 
patterns found in a community are similar to a pattern that 
occurs at random, or whether there is a systematic spatial 
or temporal structure of species aggregation or segregation 
(Gotelli and McCabe 2002). To achieve this, we sequen-
tially randomized the occurrence data in the matrices, using 
a fixed equiprobable algorithm with 9999 randomizations 
(Gotelli 2000). In this algorithm, the frequency of occur-
rence of the species was maintained (fixed columns), while 
the species richness varied among the MWQS sampling 
points (equiprobable rows).

We compared the degree of organization of the fish assem-
blage by calculating the standardized effect size (SES) of the 
C-score (Gotelli and Rohde 2002) for the whole MWQS 
dataset. This index estimates the deviation of the observed 
co-occurrence from the mean simulated co-occurrence, in 
units of SD from the observed variance, calculated as fol-
lows: SES = (Cobs-Csim)/Ssim, where Cobs = the observed 
C-score, Csim = the mean value of the simulated C-scores, 
and Ssim = the SD of the simulated C-scores. The higher the 
value of the SES, the greater the likelihood that the organiza-
tion of the assemblage is significantly different from random 
(Gotelli 2000). We considered SES values of at least |1.96| 
to be significant. A large difference (SES > 1.96) between 
sites in relation to a specific environmental variable indicates 

CScore =
∑

i

∑

j

Cij

(M(M − 1)∕2)

Cij = (ri − Sij)(rj − Sij)

habitat segregation, whereas small differences (SES < -1.96) 
indicate habitat filtering (Ulrich 2004; Sawilowsky 2009).

To verify whether pairs of species co-occurred more, or 
less, frequently than expected at random, we analyzed pair 
associations following Veech (2013), using the coocur pack-
age in R (Griffith et al. 2016). We removed pairs of species 
with an expected co-occurrence of < 1 from the analysis, as 
recommended by Veech (2013). We conducted this analy-
sis with the data of the dry and rainy seasons separately to 
determine whether seasonality influenced the formation of 
non-random pairs. We also assessed spatiotemporal patterns, 
using non-random pairs in a redundancy analysis (RDA), as 
described below.

Simple and multiple regression models

We ran a principal components analysis (PCA) using a 
correlation matrix to summarize the variation in the phys-
icochemical parameters of the MWQS during the study 
period. The axes with eigenvalues of over 1 were retained 
for analysis. To assess the potential relationship between 
environmental heterogeneity and co-occurrence patterns, we 
conducted multiple linear regressions between the SES val-
ues representing the temporal scale (response variable) and 
the scores of the PCA axes retained for the physicochemi-
cal variables (predictor variables). We ran this analysis to 
test the hypothesis that the physicochemical variables influ-
ence species co-occurrence patterns. We also evaluated the 
influence of precipitation on co-occurrence patterns at the 
temporal scale, based on simple linear regressions between 
the SES values for each month (response variable) and mean 
monthly precipitation (predictor variable). We ran this analy-
sis to test the hypothesis that the hydrological conditions 
influence species co-occurrence patterns. We examined three 
assumptions before implementing the regression models, to 
ensure an adequate distribution, i.e., normality, outliers, and 
overdispersion, using the simulate residuals function of the 
DHARMa package (Hartig and Lohse 2022). We would like 
to further emphasize here that the environmental differences 
between the sampling points and the distances between 
them were taken into account in the analyses to guarantee 
the validity of the samples. This assessment highlighted the 
suitability of the samples as representative replicates of the 
study basin.

Relationship between non‑random co‑occurring pairs 
and environmental variables

We applied a RDA (Borcard et al. 2011) to assess the degree 
of relationship between the species that formed non-random 
pairs in the null model and the environmental variables. We 
ran this analysis to verify the relationship between the envi-
ronmental variables (physicochemical variables and land 
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use and cover) and the co-occurring pairs. For this analysis, 
we square root transformed the matrix of the fish species 
composition, and used a dissimilarity matrix of proportional 
differences (Borcard et al. 2011). We tested the significance 
of the RDA axes using the Monte Carlo test with 9999 per-
mutations (Borcard et al. 2011). We used the envfit routine 
of the vegan package (Oksanen et al. 2022) to determine the 
contribution of the fish species and environmental variables 
to the dissimilarity identified by the RDA. Once again, we 
evaluated the significance of the associations between spe-
cies and environmental variables based on 9999 permuta-
tions (Borcard et al. 2011), with a significance level of 5% 
(p < 0.05), in the R program (R Core Team 2023).

Correlation between co‑occurrence patterns 
and environmental niche breadth

We employed the outlying mean index (OMI) (Dolédec et al. 
2000) to estimate species tolerance (TOL) as a physicochem-
ical niche. This approach is an ordination technique that con-
siders the ecological niche of each species (the abundance 
of the species was used here) within a community through 
combinations of environmental variables (in the present 
case, electrical conductivity, DO, pH, and temperature). In 
this approach, the tolerance of a species refers to the extent 
of its environmental niche, which reflects the amplitude of 
its distribution along the environmental gradient found in 
the study area. A low OMI value indicates that the distribu-
tion of a species is restricted by environmental conditions 
(specialist species), whereas a high value implies that the 
species has a broader distribution in habitats with more vari-
able environmental conditions (generalist species). We used 
the subniche package for this analysis (Karasiewicz 2022). 
Then, to evaluate whether species co-occurrence was corre-
lation by fish TOL in relation to spatiotemporal and seasonal 
environmental factors, we applied the Mantel test between 
the checkerboard unit matrix of the C-scores (the number 
of times a species did not form a species pair) and the TOL 
values from the OMI. The TOL values were transformed 
into the Euclidean distance that separated each species pair, 
while rare species were removed, and the environmental 
variables (except pH) were standardized by log10 transfor-
mation. We ran this analysis to test hypothesis 2.

Results

Co‑occurrence patterns of the fish assemblage

We collected a total of 8187 individual fish during the study 
period, representing 75 species, 25 families, and seven 
orders. The most prominent orders were the Characiformes, 
with 5794 specimens, followed by the Cichliformes (1777 

specimens) and the Gymnotiformes (387 specimens). The 
most abundant families were the Characidae, with 4544 
specimens collected, the Cichlidae (1777 specimens), and 
the Iguanodectidae (418 specimens). Serrapinnus micro-
don (Eigenmann, 1915) was the most common species, 
with 1335 specimens collected, followed by Serrapinnus 
micropterus (Eigenmann 1907) with 1051 specimens, and 
Apistogramma acrensis Staeck, 2003, with 847 specimens.

We recorded a species richness of nine species (n = 1417 
specimens) at site P1, 33 at P2 (n = 506), 24 (n = 867) at P3, 
50 (n = 2956) at P4, and 42 (n = 2441) at P5 (see Supple-
mentary 2). We tested 32 null models, of which 18 (56.25%) 
returned patterns significantly different from random, while 
14 (43.75%) presented a random pattern (Table 2). These 18 
non-random models all revealed positive associations, i.e., 
an aggregated pattern among the species (SES < − 1.96). 
While other models were significantly different from ran-
dom, they did not have SES values of greater than 1.96 or 
less than -1.96, which means that they were random. At a 
larger scale (spatiotemporal or seasonal), random patterns 
were only found for the flood period, while the other patterns 
were aggregated (Table 2). At a more restricted scale (sam-
pling points and months), seven samples were aggregated, 
while eight were random.

At the spatiotemporal scale, the application of Veech’s 
(2013) analytical approach permitted the removal of 1933 
(73.55%) of the 2628 possible species pairs from the analysis 
because the expected co-occurrence was < 1, leaving 695 
pairs for analysis. Almost a quarter (24.7%) of these pairs 
were non-random, with 130 positive (aggregated) and 42 
negative (segregated) pairs, while the remaining 523 (75.3%) 
pairs were random. During the dry season, there were 1540 
possible species pairs, of which we removed 938 (60.91%) 
due to them having an expected co-occurrence of less than 
1. One hundred (16.6%) of the remaining 602 pairs were 
non-random, including 80 positive and 20 negative pairs, 
while the other 502 pairs (83.4%) were random. In the rainy 
season, we removed 1222 (76.57%) of the 1596 possible spe-
cies pairs from the analysis due to their expected co-occur-
rence being less than 1, which left 374 pairs for analysis. 
Only 15.2% of these pairs were non-random, consisting of 
32 positive (aggregated) and 25 negative pairs (segregated), 
while the other 317 (84.8%) were random.

Simple and multiple regression models

The first two axes of the PCA presented eigenvalues 
greater than 1, and explained approximately 76.05% of the 
total variance in the physicochemical data (Table 3). The 
first axis was correlated positively with DO and negatively 
with the pH and temperature of the water. The second axis 
was related positively, primarily, to conductivity. The 
SES was not related to any of the PCA axes (F2.9 = 1.44, 
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adjusted r2 = 0.07, p = 0.28), although there was a posi-
tive relationship between the SES values and precipitation, 
with significant SES values being recorded during periods 
of reduced precipitation (F1,10 = 7.42, adjusted r2 = 0.37, 
p = 0.02; Fig. 2).

Relationship between non‑random co‑occurring 
pairs and environmental variables

In the RDA, axes 1 and 2 together explained 24.5% of the 
total variance in the spatiotemporal data from the MWQS 
(Table 4). The temperature of the water, DO, pH, forest 
cover, and pasture were all correlated significantly (p < 0.05) 
with the RDA axes. DO (0.33), pH (0.37), and forest cover 
(0.64) contributed positively to RDA1, while the other vari-
ables had a negative contribution, i.e., water temperature 
(− 0.40) and pasture (− 0.73). While DO (0.23) and forest 

Table 2  Null models for the fish assemblage of the micro-watershed 
of the Quinoá Stream (MWQS) sampled between 2016 and 2018

SES Standardized effect size
* Model is significantly different from random

Null models n Observed index Mean of 
simulated indi-
ces ± SD

SES

Spatiotemporal
Sites and months 60 28.01 30.58 ± 0.14 − 6.69*
Sites 5 0.54 0.96 ± 0.00 − 19.12*
Months 12 2.29 2.42 ± 0.02 − 2.20*
Spatial scale
Site 1 12 0.33 0.87 ± 0.092 − 1.35
Site 2 12 2.85 3.34 ± 0.01 − 3.54*
Site 3 12 1.00 1.22 ± 0.01 − 1.89
Site 4 12 2.69 3.01 ± 0.007 − 3.76*
Site 5 12 3.64 3.95 ± 0.01 − 2.71*
Seasonal scale
Dry 30 12.34 14.43 ± 0.06 − 8.73*
Flood 30 10.89 10.83 ± 0.045 0.25
Dry season
Site 1 6 0.13 0.42 ± 0.022 − 1.93
Site 2 6 0.88 1.11 ± 0.004 − 3.29*
Site 3 6 0.61 0.6 ± 0.006 0.17
Site 4 6 1.15 1.22 ± 0.003 − 1.26
Site 5 6 1.13 1.11 ± 0.002 0.30
Flood season
Site 1 6 0.07 0.29 ± 0.029 − 1.53
Site 2 6 1.31 1.42 ± 0.009 − 1.23
Site 3 6 0.85 0.99 ± 0.005 − 3.33*
Site 4 6 0.84 0.955 ± 0.007 − 3.34*
Site 5 6 1.05 1.187 ± 0.002 − 2.73*
Temporal scale
August 2016 5 0.68 1.00 ± 0.001 − 7.70*
October 2016 5 0.00 0.731 ± 0.007 − 8.20*
December 2016 5 0.91 1.01 ± 0.002 − 1.88
February 1207 5 0.92 0.93 ± 0.004 − 0.10
April 2017 5 0.87 0.98 ± 0.001 − 2.70*
June 2017 5 0.84 0.98 ± 0.001 − 3.50*
August 2017 5 0.71 0.90 ± 0.002 − 3.60*
October 2017 5 0.99 1.15 ± 0.002 − 2.90*
December 2017 5 1.26 1.18 ± 0.003 1.38
February 2018 5 1.24 1.27 ± 0.005 − 0.40
April 2018 5 1.26 1.31 ± 0.005 − 0.70
June 2018 5 0.85 1.19 ± 0.002 − 6.40*

Table 3  Results of the principal components (PC) analysis applied to 
the physicochemical variables measured bimonthly during the present 
study, over a 12-month period

Variables PC1 PC2

Water temperature − 0.77 0.27
Conductivity 0.21 0.91
Dissolved oxygen concentration 0.76 0.38
pH − 0.82 0.33
Eigenvalue 1.89 1.16
Percent of variability explained 47.19 28.88

Fig. 2  Simple linear regression between the standardized C-scores 
(SES) of the fish assemblage and mean monthly precipitation (millim-
eters) on a log10 scale

Table 4  Loadings of the redundancy analysis (RDA) between species 
that formed non-random pairs and the abiotic variables measured in 
the micro-watershed of the Quinoá Stream (MWQS)

Variable RDA1 RDA2

Water temperature 0.40 0.19
pH − 0.37 0.22
Dissolved oxygen concentration − 0.34 − 0.23
Forest cover − 0.64 − 0.43
Pasture 0.73 0.33
F (ANOVA) 12.64 6.47
Eigenvalue 0.09 0.04
Proportion explained 0.16 0.08
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cover (0.44) also contributed positively to RDA2, water 
temperature (− 0.20), pH (− 0.22), and pasture (− 0.34) all 
contributed negatively.

In the RDA, 29 of the 40 species that formed non-random 
pairs were related significantly to environmental variables 
(Supplementary 3). The electric fish Gymnorhamphichthys 
rondoni, the armored catfish Rineloricaria lanceolata and 
Ancistrus spp., the leaf fish Helogenes marmoratus, and the 
tetra Hemigrammus ocellifer, were all associated positively 
with forest cover and DOs, and negatively with pasture and 
water temperature. On the other hand, Bryconops cf. cau-
domaculatus, S. microdon, and Triportheus angulatus were 
associated negatively with pH, occurring typically in areas 
with reduced forest cover. The cichlids Apistogramma acren-
sis, Aequidens tetramerus, and Crenicichla semicincta, as 
well as the wolf fish Hoplias malabaricus (Bloch, 1794), 
also occurred in less forested areas (Fig. 3).

Correlation between co‑occurrence patterns 
and environmental niche breadth

At a spatiotemporal scale, we found no significant cor-
relation between the C-score chessboard units and either 
the tolerance of the species to environmental conditions 
(r = − 0.05; p = 0.82; Supplementary 4) or the flood period 
(r = − 0.06; p = 0.73). We did, however, find a low, but sig-
nificant, correlation for the dry period (r = 0.14; p = 0.002; 
Fig. 4).

Discussion

We observed aggregated and random co-occurrence patterns 
in the fish assemblage of the MWQS at both regional and 
local scales. Precipitation significantly influenced the ran-
domness of species co-occurrence patterns, while species 
pairs were correlated with the varying degrees of habitat 
preservation at the different study sites. During dry peri-
ods, the physicochemical conditions of the environment also 
played a fundamental role, driving down the co-occurrence 
of species with dissimilar environmental requirements.

Co‑occurrence patterns of the fish assemblage 
and simple and multiple regression models

At a spatiotemporal scale, the fish assemblages of the 
MWQS presented patterns of aggregation, being influenced 
by both month and sampling point, which underscores the 
importance of assessing the characteristics of a community 
at multiple scales (Denny et al. 2004; Mouchet et al. 2013; 
Ortega et al. 2015). Williams et al. (2022) demonstrated 
how certain resources are ephemeral and vary considerably 
over time, while habitat preferences shift over a much big-
ger scale. Given this, co-occurrence approaches that do not 
incorporate a temporal dimension may fail to detect which 
resources affect ecological processes. In the present study, 
we found that different types of co-occurrence pattern were 
influenced by the scale of analysis. Thus, important aspects 

Fig. 3  Redundancy analysis 
(RDA) between the species that 
formed non-random pairs and 
the abiotic factors recorded 
in the micro-watershed of the 
Quinoá Stream (MWQS). The 
longer arrows indicate higher 
levels of correlation with the 
axes, while the green shading of 
the circles indicates the forest 
cover of each sampling point. 
AEQTET Aequidens tetramerus, 
APIACR  Apistogramma acren-
sis, BRYCAU  Bryconops cau-
domaculatus, CRESEM 
Crenicichla semicincta, EIGVIR 
Eigenmannia virescens, GYM-
RON Gymnorhamphichthys 
rondoni, HELMAR Helogenes 
marmoratus, HEMOCE Hemi-
grammus ocellifer, HOPMAL 
Hoplias malabaricus, PHEPEC 
Phenacogaster pectinata, 
SERMIC Serrapinnus microdon, 
TRIANG Triportheus angulatus 
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of the patterns of variation may go undetected when the 
spatial and temporal dimensions of species co-occurrence 
are analyzed separately.

Spatially, the fish assemblage presented an aggregated 
pattern at sites with minimal impacts from land use, while 
patterns were random in the more impacted areas. Site P2 
was the most preserved location in the study area, e.g., with 
total forest cover, sandy substrates, and a continuous flow of 
water. By contrast, P1 lacked any forest cover whatsoever, 
and was dominated by macrophytes, which had created a 
lentic environment with low fish species richness, composed 
predominantly of species adapted to environments with high 
levels of anthropogenic impact. Similarly, P3, despite hav-
ing some forest cover, was affected by a culvert that was 
undersized, which had resulted in the formation of a lentic 
environment dominated by macrophytes, which had also led 
to a reduction in species richness. Site P4 was located near a 
road with an undersized culvert, while P5 had been dammed 
to supply farmland with water. However, both of these sites 
had retained their lotic characteristics, which contributed 
to a more preserved environment than those found at sites 
P1 and P3.

Overall, our findings indicate that environmental degra-
dation has had a negative impact on the fish assemblage of 
the MWQS, which has led to a reduction in species richness 
and the destabilization of local fish co-occurrence patterns. 
This is consistent with the expectation that non-random co-
occurrence patterns are driven by common species-habitat 
relationships in the study system (Peres-Neto 2004). Sea-
sonal variation also played a significant role in shaping co-
occurrence patterns, with aggregated patterns arising during 
the dry months and practically random patterns during the 

rainy season. There were also more positive associations 
between pairs of species during the dry season than dur-
ing the rainy season. The linear regression between the SES 
and precipitation revealed that the influence of the latter on 
co-occurrence patterns differed according to season. The 
increased precipitation during the rainy season led to the 
randomization of co-occurrence patterns, due primarily to 
a lack of organization at points 1 and 2. During periods of 
lower precipitation, during the dry season, by contrast, the 
fish fauna presented marked aggregation, influenced primar-
ily by the organization of the community at point 2. Based 
on these findings, we can partially accept our first hypoth-
esis, i.e., that seasonal variation had a significant influence 
on patterns of species co-occurrence, even though the phys-
icochemical variables had no clear effects.

The natural hydrological regime is considered to be the 
most important source of variation in fluvial systems, as 
observed by Jackson et al. (2001). In the MWQS, monthly 
precipitation varied greatly over the course of the 2 years 
of the study period, ranging from 25 to 467 mm. In lotic 
systems, the flood pulse can lead to a segregation of the fish 
assemblage, whereas in lentic systems, it tends to result in 
a random distribution. Fitzgerald et al. (2017) found that 
during the rainy season, the fish assemblages of tropical 
streams are highly structured through environmental filter-
ing, as they disperse and select habitats across the expansive 
areas inundated on the floodplain, which are not available 
to them during the dry season. In the dry season, the reduc-
tion in the area of aquatic habitat available to fish leads to 
decreased dispersal and an increase in interspecific com-
petition for habitat. As a consequence, the increase in the 
water level in Amazonian streams during the flood period 

Fig. 4  Correlation between the checkerboard units and the tolerance levels of environmental conditions in the fish assemblage sampled between 
2016 and 2018 in the micro-watershed of the Quinoá Stream (MWQS)
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allows for a greater diversity of habitats and access to larger 
quantities of feeding resources. These findings underscore 
the importance of using a seasonal approach for research in 
the Amazon region.

The numerous anthropogenic impacts observed within 
the MWQS, such as the construction of dams and roads, 
and shifts in land use for agriculture, account for the large 
numbers of random species pairs identified at all scales in 
the present study. Anthropogenic events, and even natural 
impoundment, can randomize co-occurrence patterns within 
an assemblage, as the resulting changes in habitat condi-
tions disrupt the fish assemblage. One other determining 
factor may be the extreme environmental heterogeneity of 
the study ecosystem, given that Amazonian stream species 
do not typically rely on each other, but rather respond collec-
tively to the availability of resources and habitat heterogene-
ity. In the only previous study, to the best of our knowledge, 
of species co-occurrence patterns in Amazonian stream fish, 
Lobato et al. (2022) also documented a large number of ran-
dom species pairs, and concluded that the highly diverse 
and heterogeneous environments of Amazonian streams may 
favor these random associations.

Relationship between non‑random co‑occurring 
pairs and environmental variables

We found that a combination of forest cover and DO influ-
enced certain, more specialized species. Differences in the 
percentage of forest cover among the sampling points fil-
tered species, with generalists occurring in degraded envi-
ronments, from which the more specialized species tended to 
be absent. Deforestation can lead to an increase in the total 
abundance of some fish species, due to the proliferation of 
generalists, while species associated with riparian vegetation 
tend to disappear (Casatti et al. 2015; Brejão et al. 2018; Ilha 
et al. 2019).

Based on these findings, we can accept our hypothesis 
the spatiotemporal structure of the fish assemblage is non-
random, and that the species co-occurrence patterns are 
influenced by land use and cover. Indeed, the influence of 
the local landscape tends to be more significant in streams 
with degraded watersheds (Daniel et al. 2015). Local envi-
ronmental variables are also important predictors of the 
structure of fish assemblages (Barbosa et al. 2019; Montag 
et al. 2019), and an increasing number of studies have shown 
that stream fish assemblages in Amazonian environments are 
influenced by both variables, in addition to other, interacting 
factors (Arantes et al. 2018).

In the present study, more sensitive fish species such 
as G. rondoni, H. marmoratus, and Tyttocharax madeirae 
occurred exclusively in the stream with total forest cover, 
i.e., in highly preserved areas. For example, the psammo-
phile G. rondoni inhabits sandy bottoms with either high or 

low flow rates, using sandbanks to shelter and feed, and this 
specialized species is highly dependent on the availability 
of a well-structured environment (Soares et al. 2017). Simi-
larly, H. marmoratus inhabits entangled roots with leaf litter, 
and is dependent on the availability of allochthonous materi-
als (Ferreira et al. 2018). This species is considered to be a 
crucial bioindicator of the ecological integrity of Amazonian 
streams. Species of the genus Tyttocharax inhabit streams 
with relatively fast flowing water, associated with marginal 
roots and stems (Brejão et al. 2018), which accounts for the 
co-occurrence of these species in environments with total 
forest cover, continuous water flow, and sandy substrates.

The suckerfish Ancistrus spp., and R. lanceolata, were 
also more common in streams with total forest cover, and 
were rare in areas with reduced forest cover. Casatti et al. 
(2005) noted that species of the family Loricariidae are graz-
ers that rest on logs and rocks to feed on periphytic matter, 
which makes them dependent on riparian vegetation. The 
cardinal tetra H. ocellifer was associated primarily with 
well-forested streams, but was common in all areas, reflect-
ing its tolerance of varying conditions.

In contrast with these more specialized fish, species more 
tolerant of environmental change tended to persist, and even 
increase in numbers, in degraded areas. These species often 
have a generalist diet (Casatti et al. 2012; Benone et al. 
2022), as seen in the omnivorous Triportheus angulatus, or 
feed primarily on autochthonous resources, such as Bryco-
nops cf. caudomaculatus and S. microdon. Many of these 
species are also tolerant of extreme conditions, with high 
trophic plasticity, such as  A. acrensis, A. tetramerus, and C. 
semicincta, and the wolf fish H. malabaricus.

We also observed that the presence of B. cf. caudomacu-
latus, S. microdon, and T. angulatus correlated negatively 
with pH, which reflects their tolerance of more acid envi-
ronments. Indeed, some species are able to maintain con-
trol of their gill permeability even in environments with a 
low pH, which makes them more acid tolerant. By contrast, 
species of the genus Hemigrammus have reduced control 
of their gill permeability in low-pH environments, and are 
thus less tolerant of acidic conditions. The importance of the 
pH of the water, especially in lower-order streams, has been 
well documented in previous studies. The decomposition 
of organic matter from the riparian vegetation also releases 
substances, such as humic and fulvic acids, into the water, 
causing it to become more acidic. This favors species that 
are more specialized and better adapted to these conditions.

Correlation between co‑occurrence patterns 
and environmental niche breadth

During the dry season, different species with varying levels 
of environmental tolerance tended to expand their physico-
chemical niches, thus avoiding co-occurrence. In a general 



Influence of environmental conditions and the fragmented landscape on the co‑occurrence… Page 11 of 13 64

spatiotemporal context, however, and during the rainy sea-
son, species co-occurrence was not correlated with these 
distinct levels of environmental tolerance. Based on these 
findings, we can accept our second hypothesis, i.e., that the 
dry season reduces the co-occurrence of species that are 
less similar to each other in their tolerance of environmental 
conditions. In the present study, species from different fami-
lies, such as the Cichlidae (A. tetramerus, A. acrensis, and 
Satanoperca jurupari), Characidae (Astyanax bimaculatus 
and Moenkhausia oligolepis), Crenuchidae (Characidium 
sp.), Hypopomidae (Brachyhypopomus sullivani), Lori-
cariidae (Farlowella smithi and Rineloricaria castroi), and 
Serrasalmidae (Serrasalmus rhombeus), all had a broader 
niche during the dry season, in comparison with the rainy 
season. These findings reflect how lower water levels forced 
certain species to expand their niches, resulting in a reduced 
co-occurrence of species with dissimilar tolerance levels.

During the dry season, the quality of the aquatic habitats 
and, in particular, the water typically deteriorates, with low 
concentrations of dissolved oxygen and increased levels of 
hydrogen sulphide. This leads to an increase in fish mortal-
ity, although species with accessory respiratory adaptations 
are best able to persist under such conditions (Winemiller 
et al. 2008). In this context, environmental filtering removes 
species that lack the evolutionary traits that enable them 
to persist under specific environmental conditions (Keddy 
1992). Overall, then, our findings highlight how environ-
mental factors influence fish co-occurrence patterns in Ama-
zonian streams (Peres-Neto 2004; Hoeinghaus et al. 2007; 
Giam and Olden 2016; Hubbell et al. 2020; Cordero and 
Jackson 2021).

Conclusions

To the best of our knowledge, this is the first study to assess 
the importance of both temporal and seasonal factors in the 
co-occurrence patterns of Amazonian stream fish assem-
blages, and, in fact, is one of the few studies of its type to 
be conducted anywhere in the world. The large numbers of 
random pairs and the predominance of aggregated pairs, in 
comparison with segregated pairs, may be the typical pattern 
in Amazonian streams affected by forest fragmentation. As 
far as we know, this is also the first study to show that the 
dry season provokes a broadening of the niches of stream-
dwelling Amazonian fish species which, in turn, reduces the 
co-occurrence of these species. Nevertheless, this pattern 
can only be confirmed by further research that uses a similar 
approach to that adopted here, and, in particular, by expand-
ing the spatiotemporal scales investigated. Finally, if the cur-
rent shifts in land use in the study area continue, the fish 
assemblage investigated here will likely suffer a significant 
loss of diversity and the destabilization of its community 

structure, including the probable extinction of the most sen-
sitive species.
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